

Nutrient balances at different scale as indicator of sustainability

M. Tolomio, A. Berti and M. Borin

Nutrient budgets in EU

- European agriculture contributes 30–80% of nitrogen (N) and 20–70% of phosphorus (P) loads to water bodies (OECD, 2008)
- The Water Framework Directive (2000/60/CE) aims to reduce pollution from all agricultural, promoting the use of Agro-environmental indicators (AEIs)
- Among AEIs used for fertilisation management, nutrient budgets are the most common (Langeveld et al., 2007)

Nutrient budgets in EU (Source: Eurostat)

- Gross balances are computed per hectare of agricultural land, on a one-year basis
- The indicators estimate the potential surplus of phytonutrients and are used as proxies for the pollution risk

UNIVERSITÀ

क्रास्ट्र प्रदेश

de Padova

Are estimates reliable?

Estimation of nutrient balances

Observed 'real' fields

Reproduce real conditions Observed values are affected by carry-over effects of past fertilisations

Long-term Experiments (LTE)

Stable effects Productivity depends on ratio between nutrients

Data from LTEs are applicable in real fields, with different cropping sequences and fertilisation in time?

Materials & Methods - LTE

- Nutrient balances (N and P₂O₅) from a Long-Term Experiment (LTE) going on from 1962
- Period considered: 1989 to 2015
- Rotations:
 - wheat and maize monocultures
 - Two-year (wheat-maize)
 - Four-year (sugarbeet, soyabean, wheat, maize)
 - Six-year (maize, sugarbeet, maize, wheat, alfalfa, alfalfa) Slurries
- Crops considered: Winter wheat
 - Maize
 - Soybean (only P₂O₅)

Cattle

slurries or residues

Materials & Methods – normal fields

- Fields of the Experimental Farm of the University of Padova conducted with standard agricultural practices, both Conventional and Organic
- Years 1997 to 2015

Fertilisations used:

Similar pedo-climatic conditions as LTEs

	Crop	Туре	n	Average	Min	Max
Ν	Winter Wheat	Organic	12	104.8	0.0	150.2
		Conventional	17	157.5	32.0	227.0
	Maize	Organic	14	154.0	54.0	264.0
		Conventional	23	333.2	264.0	604.0
P_2O_5	Winter Wheat	Organic	12	2.5	0.0	29.6
		Conventional	17	82.7	36.0	106.7
	Maize	Organic	14	44.4	14.4	117.3
		Conventional	18	130.4	17.7	396.0
	Soybean	Organic	14	29.6	11.6	47.5
		Conventional	14	59.1	0.0	79.7

Estimation of nutrient budgets

Gross nutrient balance:

GB = fertilisers+manures+others-harvested

- Adaptation of values from real fields evaluated through Residual Mean Square Error (RMSE)
- Confidence intervals of RMSEs estimated through Bootstrap procedure

Ratio Output/Input on LTE

Ratio Output/Input on LTE

Amount of fertiliser required for Out/In = 1

Crop	Winter wheat	Maize	Soybean
		kg ha⁻¹	
Ν	123	147	-
P_2O_5	44	46	65
		Ý	

Critical values (N and P crit)

- These are not optimal fertilisations but just balancing points
- Considering nutrient efficiency, a Output/Input ratio < 1 should be desirable

INIVEBSITÄ upchu Situta

or Padova

Fertilisations in real fields

- Nutrient supply tends to be higher than critical values
- Very high N input in Maize and of P in Wheat (organic fertilisation)
- Soybean underfertilised with P

N in real fields

Observed field data tends to follow the forecasts from LTE

UNIVERSITÀ DEGLI STUDI DI PADOVA

Environment, Sustainable Agriculture and Forest Management - Padova, 25-29th September 2016

CONV

ORG

LTE

P₂O₅ in real fields

Observed field data have frequently negative GB (Out/In>1)
Discrepancy from LTE particularly at low Inputs

UNDERSTÀ DECLI STUDI DI PADORA

RMSE - prediction based on LTE

- N: low RMSE independently from type of Ag and fertilisation level
- P_2O_5 : Higher RMSE, effect of type of Ag and of fertilisation level

Conclusions

- Gross balances of P from real fields tends gave higher estimates of Out/In than those from LTEs
- The discrepancy is higher for low fertilisations (carry-over effect of past distributions?)
- What's the truth?

Basing on LTE: field fertilisations are higher than those required,

Basing on field: P fertilisation can even be increased (by ~50%),

