

Soil Carbon Modelling

Budiman Minasny Alex McBratney Jose Padarian

Background – Why the interest in soil carbon?

Total magnitude of C pools (billions of tonnes)

Soil carbon

Total magnitude of C pools (billions of tonnes)

Why Soil Carbon 'Gold Rush'?

$$1 \text{ Pg} = 10^{15} \text{ g} = 1 \text{ billion ton}$$

Source: Lal (2006)

Paris Climate Change Conference

- Soil Carbon 4 per mille

Soil C 4 per mille

Agricultural practices that can sequester soil carbon

- The need for better and more cost effective measurement of soil C
- Auditing SOC
- Modelling SOC
- Monitoring SOC

Empirical models

Digital soil mapping

Digital soil mapping

Prediction

Prediction variance

Sampling Design for Soil C Auditing

De Gruijter et al., 2016. Farm Scale Soil C Auditing. Geoderma.

Semi Empirical/Mechanistic models

Global Soil C Assessment

Model

 $SOC_{xyt} = f(elev_{xy}, slope_{xy}, tap_{xy}, mat_{xy}, lc_{xyt})$

Global Soil C Assessment

- Models based on land cover change

$$- dC/dt = A - k. C$$

MG (MAT: 24 °C, TAP: 1900 mm), CC (MAT: 14 °C, TAP: 500 mm), and RN (MAT: 9 °C, TAP: 200 mm)

Change 2001-2009

Process-based models

Struc-C

 Modelling how carbon affects soil structure
 Geoderma

 Karim Malamoud *, Alex. B. McBratney, Budiman Minasny, Damien J. Field

 Faculty of Agriculture Food & Natural Resources, McMillan Building A05, The University of Sydney, NSW 2006, Australia

- There are influences and feedbacks between Soil Organic Carbon and soil structure
 (e.g. Edwards and Bremner, 1967; Field, 2000; Kleber et al, 2007; Six et al., 2004)
- Soil structure is rarely considered in soil carbon models

♦ How does SOC influence the soil aggregation?
♦ Building a better structure (model)

Coleman and Jenkinson, 1999

Aggregation

- The smallest aggregates are composed of organo-mineral associations. Strong clay to SOC bonds
- The clustering of these smaller aggregates forms larger aggregates, which in turn provides physical protection of the SOC
 between these aggregates from microbial attack.

Contents lists available at SciVerse ScienceDirect

Soil Biology & Biochemistry

: 🗨

journal homepage: www.elsevier.com/locate/soilbio

Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands

Sarah L. O'Brien^{a,b,*}, Julie D. Jastrow^b

^aDepartment of Biological Sciences, M/C 066, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA ^bBiosciences Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439, USA

PADOVA-SYDNEY

Years since restoration

Other models

Carbon, aggregation, and structure turnover (CAST), Stamati et al. 2013

- /

PAUUVA-SYUNEY

Struc-C Improvement

Distribution with depth

- A better definition of Aggregate pools
- Reconciling measured & modelled aggregates

Soil C Landscape model

- 3D Soil genesis model, millennial time scale
- C -> Simple 2 Compartment model, NPP production, erosion, vertical mixing, productivity feedback

The University of Sydney

A quantitative model for integrating landscape evolution and soil formation T. Vanwalleghem, U. Stockmann, B. Minasny, A.B. McBratney. JGR

PADOVA-SYDNEY

Soil-landscape model

Conclusions

- 4 per 1000: Soil C is relevant for mitigation of climate change
- To achieve 4 per mille Soil C initiative, we need to be able to measure it with confidence, model the C change & monitor it.
- Soil C & structure still lacks a quantitative model.
- Opportunities for greater collaboration

