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The anthropocene




e The perturbed planetary biogeochemistry

Data: CDIAC/NOAA-ESRL/GCP/Joos et al 2013/Khatiwala et al 2013
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The perturbed planetary biogeochemistry
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Land use and land cover change
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Only 30% of the land surface is still in primary state!
It was 70% in 1900.. Year 2100

Proportion of landcover in primary landcover (percent)

<[ T

0 0.2 0.4 0.6 0.8 1

d ACP26 - IMAGE

G. C. Hurtt et al 2011. Clim. Change



The perturbed climate system
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Emerging signals from the biosphere




The Planet is “greening”
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Land biogeochemistry: C fluxes and pools in different latitudes

Enhanced seasonal exchange of CO,
by northern ecosystems since 1960

Graven et al. Science 341 (2013).

Recent trends in global biomass

Liu et al. Nat. Clim. Chang. 5, (2015)
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Interpreting the signals
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A comprehensive view of the forests’ role in the climate system

Considered in
climate treaties

Carbon Cycle
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What is the role of forest in the climate system?

© Reflected sunlight
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We are living 1in a data-rich era!

e Vegetation structural and physiological RES
properties (biomass, tree height, SIF, GPP)

e Surface biophysics (e.g. albedo, LST, ET, H)

e Atmospheric GHG concentrations

The analysis presented are all based on satellite observations..



Detecting the signal of forest cover from satellite observations

Detecting the signal of temporal changes in forest cover
Reality at time 1 Reality at time 2
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Detecting the signal from observations: datasets

Forest cover change

Annual observations based on LANDSAT
30m resolution (2000-2012)

Surface temperature
MODIS AQUA

Daytime and night-time

1Km resolution (2002-present)

Tree Forest
cover Loss + Gain
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M. C. Hansen et al. Science. 342, 850-3 (2013).
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Fraction of forest cover 2003

Detecting the climate signal from observations

climate
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£ Detecting the climate signal of changes in forest cover
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Assessment of the variation in average, maximum and minimum air temperatures
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Biophysical climate signals in the different climate zones

W Surface temperature

(Clze) Air surface temp. change AT, AST1 5 (C3) AII’ surface temp change AT,(, AST (C4) Land surface temp. change AT, LST
P b : : T : _ T . . . i : : : .
(Cl) Bor‘eal. g ; G 20l i 18 s0f 79X i
508 05 — 15| ATmean=(¢.04X+0.02 1 4 1sfA Tmean=-.05X +0.03
> : S
° Q | 3 |
Sos £ 1o ! 1 8 1of : 1
4 00 g 05f i < 8 05 ,
o
o4 £ oo :h:—q € oo :
3 n
- -05 @ _o5f ! 2 -0.5F |
8- o < _1o0kA Tmin=-0.52X +0.04 1 8 _10lATmin=-0.88X+0.07 2]
g b Atemperature q ~1.0 : :]' 1.0 |
00 02 04 06 08 1.0 =0 -0.4-0.2 00 02 04 06 0.8 -0.4-0.2 0.0 0.2 04 06 038
m LOr= T —————
o 5
a 0.8 % ”
3 g g
Co6 £ g
w -~
g g 2
= 0.4F © =]
5 E Z
502 e ! 2
g < _10[ A Tmin=-0.22X+0.01 | g Tmin=-0.79X+0.02
t 1 I 1 1 1 L 1 q L L 1 1 L 1 L
0. -0.4-0.2 00 02 04 06 0.8 -0.4-0.2 0.0 0.2 04 06 08
a0 . —_———— : ———
—_ I '
S O 20 i o 2 i 1
§0-8 :- 15} 2. & 1.5} A Tmean=3.04 i
So6 E 10 : § 10 : |
7 4 I () | 4
g Y 0.5 y o 0.5 ot
s £ 00 4 = | L
= w
50.2 £ 05 ' )
g 2 40 m=o.?3x +0.03 1 E _1olaT
[ L ! L 1 ! L -
-04-0.2 00 02 04 06 0.8
m 1.0 T T T T T T P
o 20 1 B
5 0.8 ~ 15| A Tmean=1.06X+0.03 1 .
=4 o | g‘
: 0.6 g 1.0 I - 3
=] I
g g 0 | 2
=04 £ 00 : S
o > wn
5 2 -0.5E ! °
202 Z A Tmin=0. 08X+0 02 £ mm=-0 23X 0.02
3 o < —10 éfforested Deforested | 3 -1.0 [ Afforested : Deforested |
(s} 7 L L L v .
00 02 04 06 08 1.0 10 -0.4-0.2 00 02 04 06 0.8 -0.4-0.2 0.0 02 04 06 0.8
Fraction of forest cover 2012 Fraction of deforested area Fraction of deforested area

over 2003-2012 over 2003-2012



B The seasonality of the biophysical climate signal of forest cover

(C1) Air surface temperature (C2) Land surface temperature
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Regional estimates of the biophysical climate signal of deforestation

Changes in air temperature due to forest losses in the decade 2003-2012

2003-2012
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Biophysical climate signal of changes in species composition

Europe’s forest management did not
mitigate climate warming

Kim Naudts,'*{ Yiying Chen,'t Matthew J. McGrath,' James Ryder,' Aude Valade,”
Juliane Otto,'§ Sebastiaan Luyssaert'|

Afforestation and forest g t are idered to be key instruments in mitigating
climate change. Here we show that since 1750, in spite of considerable afforestation,
wood extraction has led to Europe’s forests accumulating a carbon debt of 3.1 petagrams
of carbon. We found that afforestation is responsible for an increase of 0.12 watts per
square meter in the radiative imbalance at the top of the atmosphere, whereas an increase
of 0.12 kelvin in sL rtime ati heric b y layer temp: e was mainly caused
by species conversion. Thus, two and a half centuries of forest management in Europe
have not cooled the climate. The political imperative to mitigate climate change through
afforestation and forest management therefore risks failure, unless it is recognized

that not all forestry contributes to climate change mitigation.
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Detecting the land signal from observations

Space for time analogy

] [ = = + No need of land use change to detect signals
t = + Factor out climate variability
\ ’ D - Spatial gradients are attributed to land cover
[] &= —) =) B - Complex un-mixing of signal in fragmented
landscapes

11 Ky, +b3Ks
12 Ky, +b3Ks,

b3K3,25

= b1K1,25 + szz,zs +

&

Various fractions of
PFTs (here 3)

which add up to 1
[spatial resolution: 0.05 dd]

25 pixels => 25 values for Z

B \which can be LST, LE, albedo
[spatial resolution: 0.05 dd]




Impact of deforestation on the surface energy balance
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Impact of deforestation on the surface temperature

Conversion Forests->Grasslands/Croplands
Effect on daytime and nighttime surface temprature

Daytime LST Nighttime LST

Potential mean annual change in daily LST [K]
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The footprint of vegetation changes on the surface energy budget

Shortwave reflected

Longwave emitted

Satellite observations of the changes O el B,
in the global surface energy balance ey S
due to land cover change during
2000-2010

- Increased albedo (and therefore th
reflectance of shortwave radizaon)

Lat_ent heat Sensible heat

ob:ﬁoo

nnual temperatu, D[°C]

- Increased surface temperature (ancg of . T

longwave emission) of about 5.3 W m*

- The reduction of net radia
compensated by a reduction of

evapotranspiration, in particular in war

climates (tropical, arid)

1000 2000 3000 4000

1000 2000 3000 4000
Annually cumulated precipitation [mm/yr]

Total change in the surface energy balance (in x 10'8J)
as a consequence of PFT changes from 2000 till 2010
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The biophysical climate value of forest carbon

Global dataset of forest biomass

- from satellite passive microwave observations
- spatial resolution 0.25°, period 1993-2013

Temperature changes due to biomass variations
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The biophysical climate value of forest carbon
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The net climate value of forest carbon

How to integrate the biogeochemical and biophysical
climate value of forest carbon?

Sensble heat fl
=4
o
3
o)
2
£
3
g

Bonan G.B. Science 2008, 320:1444-1449



What is the climate value of forest carbon?

Biomass from microwave
— Biomass FAO-FRA
Biomass trends
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Regional climate response
to carbon emission/removals
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Local climate sensitivities to CO, emissions/removals

Regional climate response to carbon emission/removals Biophysical local climate response to variations in forest
biomass

2003-2012

(1L 49d 30)

Land surface temp. change due to 100% forest loss (°C)
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'
|
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Leduc, M., et a"I. 2016. Nat. Clim. Chang. 6, 474-478.

Implications for land-based climate policies and forestry
 Biogeochemical cooling is more important at northern latitudes

* Biophysical cooling on the contrary is more relevant in Tropical/Arid regions
(additional incentives to reduce tropical deforestation, REDD+)

Not all the forest carbon has the same value for the climate!
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Concluding remarks

Forests play a key role in the climate system thanks to biogeochemical and
biophysical processes. To date only the first are accounted in climate treaties.

Biophysical climate impacts of afforestation/deforestation change in sign and
magnitude in the different World regions.

The climate value of forest biomass is therefore not equal everywhere!

Biophysical cooling from forest cover increase the climate value of forest carbon
in Tropical/Arid region. This is reinforcing the local value of forest conservation.

On the contrary northern countries benefit more for the biogeochemical cooling
of the forest sink, due to the the larger climate sensitivity to CO,

The development of land-based mitigation policies based on forests have to go
beyond the C budget and consider the net climate value of forest biomass.
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The global biophysical climate signal of recent changes in forest cover
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CLIMATE CHANGE

Biophysical climate impacts of recent
changes in global forest cover

Ramdane Alkama and Alessandro Cescatti*

Changes in forest cover affect the local climate by modulating the land-atmosphere
fluxes of energy and water. The magnitude of this biophysical effect is still debated in the
scientific community and currently ignored in climate treaties. Here we present an
observation-driven assessment of the climate impacts of recent forest losses and gains,
based on Earth observations of global forest cover and land surface temperatures.

Our results show that forest losses amplify the diurnal temperature variation and increase
the mean and maximum air temperature, with the largest signal in arid zones, followed
by temperate, tropical, and boreal zones. In the decade 2003-2012, variations of forest
cover generated a mean biophysical warming on land corresponding to about 18% of the
global biogeochemical signal due to CO, emission from land-use change.

orests play a relevant role in the climate | ing that spatial differences in surface tempera-
system by absorbing approximately one- | ture between areas with contrasting forest cover
fourth of anthropogenic CO, emissions (I), | have been interpreted as the climate signal of
storing large carbon pools in tree biomass i i ion. The sub-
and forest soils (2), and modulating the land- | stitution of space for time produces unbiased re-
atmosphere exchange of energy and water vapor | sults only if forests are randomly distributed in
(3). Given the important role of forests in the | thelandscape. Conversely, the systematic location
global carbon cycle, climate treaties account for | of forests in less favorable areas (such as steeper
land-based mitigation options such as afforesta- | or colder slopes, shallow soils, etc.) may produce
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